A Study on 3D-printed and Segmented Liners

H. Bodén(1), S. Sack(2), and S. Jacob(1)

(1) MWL, Aeronautical and Vehicle Engineering, KTH Royal Institute of Technology, S-100 44 Stockholm, Sweden

(2) CCGEx, Competence Centre for IC-engine gas exchange KTH Royal Institute of Technology, S-100 44 Stockholm, Sweden
Outline of the presentation

1. Introduction
2. Experimental setup
3. 3-D Printed Liner fabrication
4. Experimental analysis techniques
 - Scattering matrix
 - Impedance determination
5. Results and discussion
6. Concluding remarks
Introduction

The IFAR Acoustic Liner Challenge is a NASA initiative where data from multiple test rigs with liner configurations fabricated using 3D printing is collected and compared.

The first is a uniform liner (next slide), for which the impedance should be nearly constant over the length of the liner.

The second is a two-segment liner (slide 5), where the only difference between the two axial segments is the depth of the core.

To fit in the KTH liner test facility the number of cells has been modified in the following way: one segment liner 30x5 chambers, two segment liner 10x5 chambers in segment 1 and 20x5 chambers in segment 2. Dimensions are given in the figure captions for Figures 1 and 2.
Introduction

The KTH liner design was modified to have 30x5 chambers having a length of 405 mm and a width of 67.5 mm.

30 X 4 Chambers
Core depth: 2.0"
Chamber dimensions: 0.4”x0.4”
Axial partition thickness: 0.133”
Spanwise partition thickness: 0.129"
Drawing has no backplate; we used 0.13”-thick aluminum plate
Facesheet Properties
- Hole diameter: 0.044” (drawing), 0.043” (as built)
- Sheet thickness: 0.032” (drawing), 0.032” (as built)
- # holes per chamber: 22
- Porosity: 12.5% (drawing), 12.0% (as built)
The KTH liner design was modified to have 10x5 chambers in segment 1 having a length of 135 mm and 20x5 chambers in segment 2 having a length of 170 mm both with a width of 67.5 mm.
Liner impedance eduction technology

- Test Flow duct at KTH

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
<th>Measurement Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Mach number</td>
<td>0~0.3M</td>
<td>Centrifugal fan with silencing ducts</td>
</tr>
<tr>
<td>Incident SPL</td>
<td>≤130dB</td>
<td></td>
</tr>
<tr>
<td>Frequency range</td>
<td>250~3000Hz (tones)</td>
<td>For these measurements</td>
</tr>
<tr>
<td>Wall sound pressure measurement</td>
<td>10 Mics: above liner 3 Mics: upstream of liner 3 Mics: downstream of liner</td>
<td>Microphones: B&K 4338 ¼ inch</td>
</tr>
<tr>
<td>Flow speed Measurement</td>
<td>16 points over the duct central cross section</td>
<td>Traversing Pitot tube</td>
</tr>
</tbody>
</table>
3-D printed liner manufacturing

The liners were fabricated using selective layer sintering (SLS) of a PA 2200 polyamide powder on a Formiga P 110 commercial SLS printer with a specified accuracy of 0.2mm +/- 0.002mm/mm. The quality of the printed parts was assessed on an Olympus BX53M microscope.

The diameter of 25 randomly picked holes along the silencers was measured and the average value was calculated to be 1.1 mm.

The back side of the cavities was closed with 20mm thick plywood plates and sealed with silicon.
Experimental analysis techniques

Plane wave scattering matrix

\[
\begin{pmatrix}
\rho_{ur} \\
\rho_{dr}
\end{pmatrix} =
\begin{bmatrix}
\rho_d & \tau_u \\
\tau_d & \rho_u
\end{bmatrix}
\begin{pmatrix}
\rho_{ui} \\
\rho_{di}
\end{pmatrix}
\]

Based on the scattering matrix transmission loss \((T_L)\) and reflection \((R)\), transmission \((T)\) and absorption \((A)\) factors can also be determined:

\[
T_{Ld} = -10 \log(\tau_d) \quad T_{Lu} = -10 \log(\tau_u)
\]

\[
R_d = \frac{(1 - M)^2}{(1 + M)^2} |\rho_d|^2 \quad R_u = \frac{(1 - M)^2}{(1 + M)^2} |\rho_u|^2
\]
Experimental analysis techniques

\[T_d = |\tau_d|^2 \quad T_u = |\tau_u|^2 \]

\[A_d = 1 - R_d - T_d \quad A_u = 1 - R_u - T_u \]
Impedance determination methods

Approximate method to determine axial wave numbers from the transmission coefficients. Relies on the assumption that only the first mode is of importance in the lined section and that reflections between the soft and hard duct sections can be neglected.

\[\tau_d = \exp(-j k_{z1d} L) \quad \tau_u = \exp(-j k_{z1u} L) \]

\[\text{Re}(k_{z1d}) = \frac{-\text{actan}\left(\frac{\text{Im}(\tau_d)}{\text{Re}(\tau_d)}\right)}{L}, \quad \text{Re}(k_{z1u}) = \frac{-\text{actan}\left(\frac{\text{Im}(\tau_u)}{\text{Re}(\tau_u)}\right)}{L}, \]

\[\text{Im}(k_{z1d}) = \frac{\ln(|\tau_d|)}{L} \quad \text{Im}(k_{z1u}) = \frac{\ln(|\tau_u|)}{L} \]
Experimental analysis techniques

We have used our convected Helmholtz Equation – mode matching impedance eduction method\(^1\) where the axial wave number is found by minimizing a cost function consisting of the differences between measured and simulated pressures at four microphone positions.

We have for most of the result used a version of the so-called straightforward technique using the ESPRIT technique\(^2\)

Results and discussion – Transmission loss
Uniform liner

M = 0

M = 0.1

Black – downstream, red - upstream
Results and discussion – Transmission loss
Uniform liner

M = 0.2

M = 0.3

Black – downstream, red – upstream

23rd CEAS-ASC Workshop, New Materials for Application in Aeroacoustics, 26-27 September 2019 Rome
Transmission loss – Two segment liner

\[M = 0 \]

\[M = 0.1 \]

Black – downstream, red - upstream

23rd CEAS-ASC Workshop, New Materials for Application in Aeroacoustics, 26-27 September 2019 Rome
Transmission loss – Two segment liner

M = 0.2

M = 0.3

Black – downstream, red - upstream
Results and discussion – Reflection, Transmission, Absorption Uniform liner

M = 0

M = 0.3

Black – absorption, red - reflection, blue - transmission
Stars – downstream, diamonds - upstream
Results and discussion – Reflection, Transmission, Absorption, Two section liner

M = 0.3

Black – absorption, red - reflection, blue - transmission
Stars – downstream, diamonds - upstream
Liner impedance, Uniform liner, M=0

Real part

Imaginary part

Liner impedance, Uniform liner, M=0.3

Real part

Imaginary part

Liner impedance, Two-segment liner, M=0

Real part

Imaginary part

Black – NASA segment 2 (2”), blue – NASA segment 1 (3”), red – ESPRIT segment 2, green – ESPRIT whole liner

23rd CEAS-ASC Workshop, New Materials for Application in Aeroacoustics, 26-27 September 2019 Rome
Liner impedance, Variation with flow speed

Real part

Imaginary part

Black – $M = 0.0$, blue – $M = 0.1$, red – $M = 0.2$, green - $M = 0.3$
Concluding remarks

- Two liners have been designed and manufactured according to the IFAR NASA challenge 1 specifications.
- The quality of the printed parts was assessed on an Olympus BX53M microscope and the quality of the print was found to be consistent with low deviation along the liners despite small slivers inside the perforation that are typical for SLS printing.
- Test were made in the KTH liner test facility without flow and for three different flow speeds with center line Mach numbers 0.1, 0.2 and 0.3.
- The data was evaluated using three different methods: an approximate plane wave scattering matrix method, a convected Helmholtz equation mode matching method and the ESPRIT technique.

...
Concluding remarks

- Comparisons were made with published data from NASA were data was evaluated using a convected Helmholtz equation FE method and the Kumerasan and Tufts technique.
- It was concluded that the ESPRIT method gave reasonable agreement with the NASA results besides the low frequency range.
- This made it probable that the liner manufacturing was of good quality and that the data analysis techniques could give results with reasonable agreement.
- It should be noted that the ESPRIT technique which gave the best result at KTH is in the same family of techniques as the Kumerasan and Tufts technique used by NASA.