## Slow sound laser in lined flow ducts

#### Antonin Coutant, Yves Aurégan, Vincent Pagneux

26 September 2019

## CEAS-ASC Workshop: New Materials for Applications in Aeroacoustics



From: Laboratoire d'Acoustique de l'Université du Mans

## Analogy [Unruh 1981]



What happens when flow becomes faster than waves?



• Wave trapping

 $\rightarrow$  acoustic analogue of a black hole:  $Dumb\ hole$ 

• Exotic wave effects around black holes could be reproduced

What happens when flow becomes faster than waves?



- Wave trapping
  - $\rightarrow$  acoustic analogue of a black hole:  $Dumb\ hole$
- Exotic wave effects around black holes could be reproduced

"Slow sound": an opportunity to realize dumb holes?

## Speed of sound:

$$c_0 = \sqrt{\frac{K}{\rho_0}}$$

K: is entropic bulk modulus  $\rho_0$ : density

## Slow sound:

- Tubes mounted flush
  → Metamaterial like
- Lower the effective stiffness
- Long wavelengths:  $c_{\rm eff} < c_0$



Waveguide with impedance treatment

## Wave propagation in lined ducts



- Units where duct height H = 1 and  $c_0 = 1$
- Potential perturbations  $\mathbf{v} = \nabla \phi$
- Inside the duct

$$\partial_t^2 \phi - \Delta \phi = 0.$$

## Wave propagation in lined ducts



## **Boundaries:**

- y = 0 hard wall:  $\partial_y \phi = 0$
- y = 1 impedance wall:  $p = Z \partial_y \phi$
- **Complex** impedance Z. Tube model:

$$Z(\omega) = \frac{i}{\sigma \tan(b\omega)} + \Gamma$$

- Dissipation  $\Gamma$  neglected
- Low frequencies  $\omega \ll \pi/2b$  (subresonance)

## Wave propagation in lined ducts



• Fixed frequency 
$$\omega = 2\pi f$$

- **Two** acoustic modes
- $\omega \ll \pi/2b$ :

$$\omega^2 = \frac{k^2}{1+b}$$

Hence  $c_{\text{eff}} = 1/\sqrt{1+b}$ 

• Increase  $\omega \to \text{dispersion}$ 

#### Lined ducts with mean flow



- Mean Mach number  $M_0 = U_0/c_0$
- **Two** types of flow:
  - Subsonic:  $M_0\sqrt{1+b} < 1$
  - Supersonic:  $M_0\sqrt{1+b} > 1$
- Possible for  $M_0 < 1$
- What is the dispersion relation?

#### Lined ducts with mean flow



• Inside the duct

$$(\partial_t + M\partial_x)^2 \phi - \Delta \phi = 0.$$

- Hard problem: vorticity modes, inhomogeneities, etc.
- $M \approx M_0$  constant except in **boundary layer**  $1 \delta \lesssim y < 1$



- Asymptotic approach: effective boundary condition [Brambley '13, AC, Aurégan, Pagneux '19]
- Our boundary condition
  - pressure p is continuous
  - displacement  $\eta$  is continuous
  - **But** effective compliance

$$C_{\text{eff}}(\omega) = \frac{\eta}{p} = C_0(\omega) + \delta C_1(\omega)$$

•  $\delta = 0$  is Ingard-Myers boundary conditions

## Lined ducts with mean flow



**Subsonic** flows  $M_0 < c_{\text{eff}}$ 

- Two acoustic modes (Doppler shifted)
- Two hydrodynamic modes (disappear for  $M_0 \rightarrow 0$ )
  - One with **positive** energy  $k_S$
  - One with **negative energy**  $k_N$
- One boundary layer mode  $k_B$  (disappear for  $\delta \to 0$ )

## Lined ducts with mean flow



**Supersonic** flows  $M_0 > c_{\text{eff}}$ 

- Hydrodynamic modes disappear
- $\bullet\,$  Two acoustic modes  ${\bf co\text{-}moving}$  with flow

## Impedance change $\rightarrow$ transsonic flow



- $M_0 > c_{\text{eff}} \rightarrow$ wave trapping
- Acoustic modes cannot propagate against the flow
- Acoustic analogue of a black hole [Unruh '81 [...], Auregan, Fromholz, Michel, Pagneux, Parentani 15']

#### Impedance change $\rightarrow$ transsonic flow



Important properties of transsonic flows:

## Couple very different wavelengths (due to Doppler effect)

#### Effective transsonic flows



- Impedance change  $\Rightarrow 4 \times 4$  scattering matrix
- Energy conservation

$$|\alpha|^2 - |\beta|^2 + |\gamma|^2 + |R|^2 = 1$$

- Possibility of **amplification** 
  - $\rightarrow$  analogue of the Hawking radiation of black holes







- Described by **complex eigen-frequencies**  $\omega \in \mathbb{C}$
- Eigen-value problem



## Eigen-value problem

- Boundary conditions
  - $\operatorname{Im}(\omega) > 0$ : decaying for  $x \to \pm \infty$ 
    - $\rightarrow$  unstable solutions
  - $Im(\omega) < 0$ : analytic continuation
    - $\rightarrow$  resonances
  - $\rightarrow$  equivalent to outgoing boundary conditions
- Spectrum symmetry  $\operatorname{Re}(\omega) \to -\operatorname{Re}(\omega)$



## Eigen-value problem

- Boundary conditions
  - $\operatorname{Im}(\omega) > 0$ : decaying for  $x \to \pm \infty$ 
    - $\rightarrow$  unstable solutions
  - $Im(\omega) < 0$ : analytic continuation
    - $\rightarrow$  resonances
  - $\rightarrow$  equivalent to outgoing boundary conditions
- Spectrum symmetry  $\operatorname{Re}(\omega) \to -\operatorname{Re}(\omega)$
- How does the spectrum change with external parameters?
  → Two main properties

#### Slow sound laser



Parameters  $b_O = 15, b_C = 6, M = 0.3, \delta = 0.002$ 

• *L* **varies** from 0.2 to 3.6

#### Two types of unstable modes:

- Static  $\operatorname{Re}(\omega) = 0$
- Dynamic  $\operatorname{Re}(\omega) \neq 0$

#### Slow sound laser



Mode profiles - Subsonic region in grey

#### • Subwavelength instability

• Governed by hydrodynamic wavelengths: Unstable mode if  $k_S L \approx \pi/2$  with  $k_S$  hydrodynamic mode

#### Conclusion

## Slow sound laser:

- Double transsonic flows
- Can be **static** or **dynamic**

[AC, Aurégan, Pagneux, JASA 2019, *arXiv:1904.03079*] Analogous to "black hole laser"

- $\rightarrow$  leads to rich nonlinear phenomenology
  - Undular bore? (static)
  - Dispersive shock waves? (dynamic)
  - Emission of solitons? (dynamic)

#### Conclusion

## Slow sound laser:

- Double transsonic flows
- Can be **static** or **dynamic**

[AC, Aurégan, Pagneux, JASA 2019, arXiv:1904.03079] Analogous to "black hole laser"  $\rightarrow$  leads to rich nonlinear phenomenology

- - Undular bore? (static)
  - Dispersive shock waves? (dynamic)

• Emission of solitons? (dynamic)

# Thank you.