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Analogy

Waves in a spacetime
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Picture of a Black Hole

(From: Event Horizon Telescope '19)
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Acoustic waves with mean flow
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What happens when flow becomes faster than waves?

(O@QO Oh..

Supersonic | Subsonic

Flow
-

o Wave trapping
— acoustic analogue of a black hole: Dumb hole

o Exotic wave effects around black holes could be reproduced
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What happens when flow becomes faster than waves?

(O@QO Oh..

Supersonic | Subsonic

Flow
-

o Wave trapping
— acoustic analogue of a black hole: Dumb hole

o Exotic wave effects around black holes could be reproduced

“Slow sound”: an opportunity to realize dumb holes?
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Speed of sound:

K
co =4 —
o

Small tubes
of length »

K: isentropic bulk modulus
po: density

Slow sound:

@ Tubes mounted flush
— Metamaterial like

e Lower the effective Waveguide with impedance treatment
stiffness

o Long wavelengths:
Ceff < Co
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Wave propagation in lined ducts
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@ Units where duct height H =1 and ¢y =1
o Potential perturbations v = V¢

@ Inside the duct
02— Ap = 0.
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Wave propagation in lined ducts
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Boundaries:
e y = 0 hard wall: 9y¢ =0
e y =1 impedance wall: p = Z0,¢
o Complex impedance Z. Tube model:
Zw)=——— 4T
o tan(bw)

e Dissipation I' neglected
o Low frequencies w < 7/2b (subresonance)
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Wave propagation in lined ducts
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o Fixed frequency w = 2n f
e Two acoustic modes
o w< m/2b:
]452
w? = ——
1+0
Hence cog = 1/4/1+b
@ Increase w — dispersion
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Lined ducts with mean flow
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Mean Mach number My = Uy/co
Two types of flow:

o Subsonic: Myv/1+b<1
e Supersonic: Myv/1+b>1

Possible for My < 1

What is the dispersion relation?

(]
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Lined ducts with mean flow
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@ Inside the duct
(Or + MO,)*¢ — Agp = 0.

e Hard problem: vorticity modes, inhomogeneities, etc.
e M =~ M)y constant except in boundary layer 1 —§ <y < 1
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Lined ducts with mean flow
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e Asymptotic approach: effective boundary condition
:[))1'111111)1({\' '13, AC, Aurégan, Pagneux '19]
@ Our boundary condition
e pressure p is continuous
o displacement 7 is continuous
o But effective compliance

Cot(w) = g = Co(w) +6 C1(w)

e ) = 0 is Ingard-Myers boundary conditions
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Lined ducts with mean flow
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Subsonic flows My < ceg

e Two acoustic modes (Doppler shifted)
e Two hydrodynamic modes (disappear for My — 0)

e One with positive energy kg
e One with negative energy ky

@ One boundary layer mode kp (disappear for 6 — 0)
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Lined ducts with mean flow
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Supersonic flows My > ceg
o Hydrodynamic modes disappear

e Two acoustic modes co-moving with flow
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Impedance change — transsonic flow

Ay
My < Cor —= Moy > ce
—_— x
> | -

o My > cef — wave trapping
@ Acoustic modes cannot propagate against the flow

@ Acoustic analogue of a black hole

[Um'u]l 81 [...], Auregan, Fromholz, Michel, Pagneux, Parentani 15’]
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Impedance change — transsonic flow
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Important properties of transsonic flows:

Couple very different wavelengths
(due to Doppler effect)
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Effective transsonic flows

Supersonic flow : Subsonic flow
7 —— kp ky —» 0
evanescent - - - - ; ko —p R
0 —» &y, ks —» O
0 — kg, kp +—— 0
I ki €a——vF 1

o Impedance change = 4 x 4 scattering matrix

o Energy conservation
a1 + Iv* + |BI* =1

@ Possibility of amplification
— analogue of the Hawking radiation of black holes
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Double transsonic flows

Supersonic flow | Subsonic flow . Supersonic flow
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Double transsonic flows

Supersonic flow , Subsonic flow , Supersonic flow
1 1
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Double transsonic flows

Supersonic flow | Subsonic flow , Supersonic flow
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@ Described by complex eigen-frequencies w € C

o Eigen-value problem
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Double transsonic flows

Supersonic flow | Subsonic flow . Supersonic flow
kp €—— : kp A4—— : kp €——
kLev_ === : kA— - : kRev_ ===
ky — kny ——» : ky ——
ki — kay — : kat >
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Eigen-value problem
e Boundary conditions

o Im(w) > 0: decaying for z — +oo
— unstable solutions

o Im(w) < 0: analytic continuation
— resonances

— equivalent to outgoing boundary conditions

e Spectrum symmetry Re(w) — —Re(w)
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Double transsonic flows

Supersonic flow | Subsonic flow . Supersonic flow
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Eigen-value problem
e Boundary conditions

o Im(w) > 0: decaying for z — +oo
— unstable solutions

o Im(w) < 0: analytic continuation
— resonances

— equivalent to outgoing boundary conditions

e Spectrum symmetry Re(w) — —Re(w)

@ How does the spectrum change with external parameters?
— Two main properties
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Slow sound laser
10

Im(w)
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Parameters bo = 15, be = 6, M = 0.3, 6 = 0.002

e L varies from 0.2 to 3.6
Two types of unstable modes:

e Static Re(w) =0
e Dynamic Re(w) # 0
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Slow sound laser

—Re(yp)
121 —Im(p) 1.2

0.8
0.6
0.4
0.2

-0.2
-0.4r -0.4

0 50 100 150 200 0 50 100 150 200
T
-

Mode profiles - Subsonic region in grey
@ Subwavelength instability

@ Governed by hydrodynamic wavelengths:
Unstable mode if kgL =~ 7/2 with kg hydrodynamic mode
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Conclusion

Slow sound laser:
@ Double transsonic flows
o Can be static or dynamic
[A(‘. Aurégan, Pagneux, JASA 2019, arXiv:1904.08079)
Analogous to “black hole laser”
— leads to rich nonlinear phenomenology

e Undular bore? (static)

e Dispersive shock waves? (dynamic)

e Emission of solitons? (dynamic)
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Conclusion

Slow sound laser:
@ Double transsonic flows
o Can be static or dynamic
[A(‘. Aurégan, Pagneux, JASA 2019, arXiv:1904.08079)
Analogous to “black hole laser”
— leads to rich nonlinear phenomenology

e Undular bore? (static)
e Dispersive shock waves? (dynamic)

e Emission of solitons? (dynamic)

Thank you.
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