

ONERA THE FRENCH AEROSPACE LAB

www.onera.fr

Advanced identification techniques and design tools applied to innovative aeroacoustic liners

Estelle PIOT

ONERA/DMPE

Université de Toulouse

estelle.piot@onera.fr

Pr Frank SIMON – frank.simon@onera.fr

Dr Fabien MERY – fabien.mery@onera.fr

Dr Rémi RONCEN – remi.roncen@onera.fr

Delphine SEBBANE – delphine.sebbane@onera.fr

Dr Pierre VUILLEMIN – pierre.vuillemin@onera.fr

4

- Context
- Liner design strategy
- Uncertainty quantification
- Illustration on recent ONERA activities

fan

Use of liners in nacelle of aircraft engines to reduce fan, turbine and combustion noise

zero-spliced liners - A380 (Journal Aerospace Lab (7) 2014)

Use of liners in wing leading edge to reduce interaction noise

Use of liners along a duct to reduce jet pump noise

Classical liners concepts

Locally reacting behavior

Surface impedance:

6

$$Z(\omega) = \frac{p'}{\boldsymbol{v}'.\boldsymbol{n}}$$

$$Z(\omega) = R(\omega) + jX(\omega)$$

• Single Degree of Freedom liner (**SDOF**): 1 resistive layer (~porous) above 1 cavity (reactive)

→ Absorption in a narrow frequency band

Double Degree of Freedom liner (DDOF):
2 resistive layers and 2 cavities

ONERA

THE FRENCH AEROSPACE LA

Resistive layers

7

SDOF

Honeycomb cells

This document is the property of ONERA. It cannot be reproduced or used, fully or partly, without prior written authorization

New challenges for noise mitigation with acoustic liners

UHBR engines

Urban air-taxi

Distributed Electrical Propulsion

ONERA

THE FRENCH AEROSPACE LAR

This document is the property of ONERA. It cannot be reproduced or used, fully or partly, without prior written authorization

8

Game-changer in manufacturing process: "3D printing"

Sintering

9

creating a solid mass using heat without liquefying it. Metal powders (DMLS) or thermoplastic powders (SLS)

Direct Metal Laser Melting (DMLM) and Electron Beam Melting (EBM)

fully melting of materials through laser or electron beam. Ideal for manufacturing dense, non-porous objects.

• Stereolithography (SLA)

photopolymerization to print ceramic or polymer objects

Radical opening of the design-space for acoustic liner concepts

Innovative liner concepts

LEONAR concept:

- Radical decrease of the resonance frequency through the prolongation of propagation length (effect on reactance)
- Increase of the absorption coefficient at low frequencies by prolongation of tube length (added resistance)

Ref: Simon et al in ICA 2013 / Inter.noise 2016 / ICSV24 / Inter.noise 2018 / J. Sound Vib., 421, 1-16, (2018)

onera

HE FRENCH APPOSPACE LA

Insertion of foam (classical or advanced internal structure)

- Liner design strategy
- Uncertainty quantification
- Illustration on recent ONERA activities

Liner design strategy

Objective: find the liner design which will yield the targeted in-duct attenuation

13 This document is the property of ONERA. It cannot be reproduced or used, fully or partly, without prior written authorization

ONERA THE FRENCH AEROSPACE LAB

Typical industrial requirements

RTCA DO-160G (FAA and EUROCAE). « Environmental Conditions and test Procedures for Airborne Equipment »

- Section 4 : Temperature and Altitude
- Section 5 : Temperature variation
- Section 6 : Humidity
- Section 8 : Vibration
- Section 10 : Waterproofness
- Section 11 : Fluid susceptibility
- Section 12 : Sand and dust
- Section 14 : Salt fog

Example of requirements for engine noise mitigation:

- · Aerodynamic behaviour: negligible impact
- Weight: max 8kg/m²
- Temp.: max 600-650 °C
- Mach: 0.5-0.6
- Fatigue strength, vibration, thermal cycle, thermal gradient, fire, drainage, 100000 200000 h
- Manufacturing costs

Area	Air inlet	Cold duct downstream	Hot nozzle	Hot plug duct
Max thickness (mm)	50	20-30	15	200
Optimum Impedance Spectrum	R/ρc: 2 to 3 X/ρc: -0.5 to -1	R/ρc: 1 to 1.5 X/ρc: 0 to -0.6	R/ρc: 1 to 2 X/ρc: 0 to -0.5	R/ρc: 0.5 to 1.5 X/ρc: 0 to -0.3

without prior written authorization

Key element: liner modeling tool

Basis of most liner modeling tools: **semi-empirical models** fitted on experimental results.

Example for a perforated plate (Kirby & Cummings 1998, Malmary et. al 2001):

$$Z = \frac{\sqrt{2\nu\omega}}{\sigma c_0} \frac{h}{\delta} + \left[26,16 \left(\frac{h}{2\delta}\right)^{-0,169} - 20 \right] \frac{\nu^*}{\sigma c_0} - 0,645 \frac{\omega h}{\sigma c_0} + \frac{4}{3\pi} \frac{1 - \sigma^2}{\sigma c_0 C_D^{-2}} |\boldsymbol{\nu}'.\boldsymbol{n}| + j \frac{\omega}{\sigma c_0} \left[h + \frac{16\delta}{3\pi} \right]$$

17 This document is the property of ONERA. It cannot be reproduced or used, fully or partly, without prior written authorization

ONERA THE FRENCH AEROSPACE LAB

How are the semi-empirical impedance models derived?

→ impedance eduction

• Direct impedance measurement (e.g. Kirby & Cummings 1998)

Figure 1. Apparatus for the measurement of the acoustic impedance of a perforate.

18

This document is the property of ONERA. It cannot be reproduced or used, fully or partly, without prior written authorization

How are derived the semi-empirical impedance models?

→ impedance eduction

- Direct impedance measurement (e.g. Kirby & Cummings 1998)
- Indirect methods (e.g. NASA, LAUM, DLR, ONERA, KTH...)

How are derived the semi-empirical impedance models?

→ impedance eduction

- Direct impedance measurement (e.g. Kirby & Cummings 1998)
- Indirect methods (e.g. NASA, LAUM, DLR, ONERA, KTH...)

→ fit on experimental data to derive a multi-parameter model

$$Z = \frac{\sqrt{2\nu\omega}}{\sigma c_0} \frac{h}{\delta} + \left[26,16 \left(\frac{h}{2\delta}\right)^{-0,169} - 20 \right] \frac{\nu^*}{\sigma c_0} - 0,645 \frac{\omega h}{\sigma c_0} + \frac{4}{3\pi} \frac{1 - \sigma^2}{\sigma c_0 C_D^{-2}} |\boldsymbol{\nu}'.\boldsymbol{n}| + j \frac{\omega}{\sigma c_0} \left[h + \frac{16\delta}{3\pi} \right] \frac{\nu^*}{\sigma c_0} + \frac{16\delta}{\sigma c_0} \left[h + \frac{16\delta}{3\pi} \right] \frac{\nu^*}{\sigma c_0} \frac{\nu^*}{$$

Two questions arise:

- what is the sensitivity of the impedance to the model formulation?
- what is the sensitivity of the impedance to an error in the model parameters?

THE FRENCH APPOSPACE IA

Key issue: dealing with the uncertainty

- Liner design strategy
- Uncertainty quantification
- Illustration on recent ONERA activities

Time

Deterministic $\boldsymbol{q}_{\text{optim}} = \arg\min_{\boldsymbol{q}} \left(\|\boldsymbol{y} - \boldsymbol{y}_{\text{exp}}\|_2 + r(\boldsymbol{x}) \right)$

- Ill-posedness of inverse problems : non-uniqueness, instability
- No uncertainty quantification

22

A posteriori : given y_{exp} , what probability density for (q_1, q_2) ?

$$\boldsymbol{\pi}(q|y_{exp}) = \frac{\overbrace{\boldsymbol{\pi}(y_{exp}|q)}^{\text{Likelihood Prior}}}{\boldsymbol{\pi}(y_{exp})} \qquad \boldsymbol{\pi}(y_{exp}|q) = \prod_{j} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{|y_{exp}(t_j) - y(t_j)|^2}{2\sigma^2}\right)$$

This document is the property of ONERA. It cannot be reproduced or used, fully or partly, without prior written authorization

ONERA THE FRENCH AEROSPACE LAB

$$\ddot{y}(t) + q_1^2 \dot{y}(t) + q_2 y(t) = 0$$

 $y(0) = 2 \quad \dot{y}(0) = -q_1^2$

Time

Deterministic $\boldsymbol{q}_{\text{optim}} = \arg\min_{\boldsymbol{q}} \left(\left\| y - y_{\text{exp}} \right\|_2 + r(\boldsymbol{x}) \right)$

- Ill-posedness of inverse problems : non-uniqueness, instability
- No uncertainty quantification

23

A posteriori : given y_{exp} , what probability density for (q_1, q_2) ?

$$\pi(q|y_{exp}) = \frac{\underset{\pi(y_{exp}|q)}{\underset{\pi(y_{exp})}{\underset{\pi(y_{ex$$

 $\boldsymbol{\pi}(q|y_{exp}) = \frac{\overbrace{\boldsymbol{\pi}(y_{exp}|q)}^{\text{Likelihood Prior}}}{\boldsymbol{\pi}(y_{exp})}$

How to sample from $\pi(q|y_{exp})$ without knowing $\pi(y_{exp})$?

→ Monte Carlo Markov Chain strategy

Random-walk generation of $y^{(k)}$ samples by exploring the space of $q \rightarrow$ creation of a Markov Chain whose stationary distribution is $\pi(q|y_{exp})$

Illustration of results

with prior knowledge

Application to porous characterization

Roncen et al. JASA vol 144 (July&Dec.) 2018; Roncen et al JASA vol 145 (March & Sep.) 2019

Liner design loop including UQ

without prior written authorization

- Context
- Liner design strategy
- Uncertainty quantification
- Illustration on recent ONERA activities

- Main challenges:
 - High-speed grazing flow (up to Mach 0,85)
 - Stringent compactness requirements
 - Mechanical resistance

Acoustic treatment of wind tunnels

Perforate + foam

Multi-Leonar

Design process

- Numerical assessment of several concepts (OPAL tool) on the target configuration (WT)
- Experimental check of the achieved impedance on a simplified configuration (Cannelle bench)
- Manufacturing and installation in the WT

ONERA

THE FRENCH AEROSPACE LA

• Acoustic treatment of wind tunnels

ONERA THE FRENCH AEROSPACE LAB

• Acoustic treatment of wind tunnels

Low sensitivity of the solution to the grazing flow model (@M=0,9) → To be checked experimentally

This document is the property of ONERA. It cannot be reproduced or used, fully or partly, without prior written authorization

32

• Acoustic treatment of air conditioning systems

- Main challenges:
 - Stringent weight requirements
 - Temperature resistance
 - Manufacturing costs

Clean Sky₂

• Acoustic treatment of air conditioning systems

- Outcome of the design process:
 - DDOF liner with combination of foam and Leonar layers

Clean Sky₂

• Broadband absorption of airframe noise

Combination of N-DOF LEONAR

35

Broadband absorption at low-frequency, with a very compact solution (~3 cm)

This document is the property of ONERA. It cannot be reproduced or used, fully or partly, without prior written authorization

ONERA THE FRENCH AEROSPACE LAB

• Low&broadband frequency liner (ONERA/TSAGI coop.)

2-DOF liner with complex perforation layout

36

Perforate + honeycomb cavity at low (solid lines) and high (dashed lines) SPL

ONERA THE FRENCH AEROSPACE LAB

Conclusions

- Need in the aeronautics industry of new liner solutions for noise mitigation of the innovative flying concepts
- New material technologies, especially additive manufacturing, have broadly opened the design space for liner concepts
- Manufacturing and operational constraints must be taken into account all along the liner design process
- Uncertainty quantification must be addressed to ensure robustness of the design outcome
 work in progress in the ONERA liner design platform (OPAL)

Thank you for your attention!

