Experimental Investigation of Porous Materials for Trailing-Edge Noise Reduction

K.-S. Rossignol, A. Suryadi, M. Herr, J. Schmidt

DLR, Institute of Aerodynamics and Flow Technology, Technical Acoustics

J. Tychsen, TU Braunschweig, Institute for Materials

Knowledge for Tomorrow

Motivation

• Long-term collaborative research initiative <u>CRC 880: Fundamentals of High Lift for Future Civil Aircraft</u>

Deutsches Zentrum
für Luft- und Raumfahrt
German Aerospace Center

Focus : quiet short take-off and landing (STOL) for civil aircraft operations in close proximity to the population

Technology Challenge : Extreme lift augmentation vs. low noise immision

Concept : active high lift system, non-slotted flap with flow control (Coanda effect), droop nose

Research goals

Airframe noise from active high-lift systems

Experimental Aeroacoustics

Generic setup - DLR F16 2D-airfoil

Material characterization

Computertomography (CT) for porosity, pore morphology (and damage behavior)

- (1) Measurement: Image stacks of radiographic images 0-360°
- (2) Reconstruction of sample, 2-D planes (grey scale)
- (3) 3-D volume with detected surface

PA200-250: Sample for tensile testing

- Measurement of structures and porosity with defect detection for Regions of Interest (ROI)
- 2-D cross sections of volume for line segmentation technique (leading to segment length)

CT Reconstruction of PA 200-250 (left: material ; right: porosity color coded)

CT Reconstruction of TE of PA 200-250 (left: material ; right: ROI1-6 for porosity analysis)

(Source: J. Tychsen, N. Lippitz, J. Rösler, Metals, 8, 598 (2018))

Material characterization

Flow resistivity (and acoustic absorption) measurements:

- Problems:
 - samples with $\phi = 100$ mm ideally needed
 - trailing edges cannot be characterized
 - thin areas of TEs do not have representative amount of volume (pores may directly connect upper and lower side)

>comparative samples needed (made of constant rolled material)

Setup for measuring flow resistance with the air-flow process (Process B) according to DIN EN 29 053 (Source: adapted from N. Lippitz, NFL Forschungsbericht 2017-18, TU BS– NFL)

Cross-section of graded PA200-250, shape of TE highlighted

Schematic diagram showing graded material with five positions that are to be measured

Attended to the second second	1. 2. 2. 2.
	2cm

2 mm – sample separated by electrical discharge machining left: surface (pores directly connecting upper and lower side) right: original sample (thickness=16 mm) with eroded disc (2 mm)

Results – parameter variations (pore size, flow resistivity)

(1) Pressure release across TE necessary

(2) Largest low-f. (< 10 kHz) noise reduction, $R_{TE}^0 < 100 Ns/m^3$

(3) No High-f. excess noise (f < 20 kHz) when $w_p \leq 160 \ \mu m$

Specification of Porous Materials for Low-Noise Trailing-Edge Applications

> M. Herr, K.-S. Rossignol^{*}, J. Delfs[†] German Aerospace Center (DLR), D-38108 Braunschweig, Germany

M. Mößner[‡] and N. Lippitz[§] Technical University of Braunschweig, D-38108 Braunschweig, Germany

DLR Hochauftrieb

AIAA 2014-3041

Tailored porous inserts for optimized noise mitigation performance

Pore size

Low frequency noise (1.25-3.15 kHz)

Variability of samples properties related to the manufacturing process

	Porosity	Pore size	Flow resistivity	
	-	μm	10 ³ Ns/m^4	Ns/m³
Reference, solid	0	0	-	-
PA 80-110	0.46	305	145.5	931 - 146
PA 200-250 50%	0.29	480	122.8	786 - 123
PA 80-110 gradient	0.27 - <mark>0.57</mark>	222 - <mark>416</mark>	839.6 - <mark>44.2</mark>	5373 - 44
PA 200-250 gradient	0.29 - 0.57	480 - 1052	122.8 - 4.0	786 - 4
PA 80-110 + 120-150	0.57 / 0.55	416 - <mark>6</mark> 30	44.2 - 15.6	283 - 16
PA 80-110 + 200-250	0.57 / 0.57	416 - 1125	44.2 - 4.0	283 - 4
PA 120-150 + 200-250	0.55 / 0.57	630 - 1125	15.6 - 4.0	100 - 4
		w_p		R_{TE}^0

Material samples properties variability

Material samples properties variability – effect of permeability gradient

Mitigation of high-frequency excess noise

Hole diam.: 45 μ m – 90 μ m

Porous TE inserts

400 mm

Conclusions

Material characterization:

- samples with $\phi = 100$ mm ideally needed
- trailing edges (as in the experiment) cannot be characterized
- thin areas of TEs do not have representative amount of volume (pores may directly connect upper and lower side)

Acoustics

- Pressure release across TE necessary
- Largest low-f. (<10kHz) noise reduction, $R_{TE}^0 < 100 Ns/m^3$
- No High-f. excess noise (f < 20 kHz) when $w_p \leq 160 \ \mu m$
- Conflicting criterias!
- Combination of hydraulicaly smooth porous plates and porous metals
- Consistency of manufacturing process is critical to ensure consistency materials properties

Conclusions

Acoustic continued ...

- Quantification of the effect of graded porous properties difficult in the experiment
- Results of the generic test at a 2D airfoil successfuly transposed to active flow control high-lift system (TE noise reduction on the order of ~10 dB)
- Porous insert integration details might be important in defining largest noise reduction
- Noise reduction at low frequencies (< 2kHz): 25% of porous length sufficient for equivalent results

